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a conventional approach (studying the genes one by one) 
would not be time- and cost-effective. We therefore devel-
oped a genome-wide, high-content siRNA screening 
approach and used it to assess the functional impact of gene 
under-expression on APP metabolism. We found that 832 
genes modulated APP metabolism. Eight of these genes 
were located within AD susceptibility loci. Only FERMT2 
(a β3-integrin co-activator) was also significantly asso-
ciated with a variation in cerebrospinal fluid Aβ peptide 

Abstract Genome-wide association studies (GWASs) 
have identified 19 susceptibility loci for Alzheimer’s dis-
ease (AD). However, understanding how these genes 
are involved in the pathophysiology of AD is one of the 
main challenges of the “post-GWAS” era. At least 123 
genes are located within the 19 susceptibility loci; hence, 
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levels in 2886 AD cases. Lastly, we showed that the under-
expression of FERMT2 increases Aβ peptide production by 
raising levels of mature APP at the cell surface and facili-
tating its recycling. Taken as a whole, our data suggest that 
FERMT2 modulates the AD risk by regulating APP metab-
olism and Aβ peptide production.

Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenera-
tive disorder. It is the leading cause of dementia worldwide. 
Memory loss and cognitive impairments are invariant, early 
signs of the AD, whereas hippocampal atrophy is one of 
the earliest histological hallmarks of the disease. Two main 
lesions are found in the AD brain: the neurofibrillary tan-
gles formed by tau aggregation in neurons, and the senile 
plaques formed primarily by aggregated amyloid-β (Aβ) 
peptides in the parenchyma. The identification of familial, 
AD-linked mutations in the genes for amyloid-β precur-
sor protein (APP) and presenilin (PS1 and PS2) associated 
with deregulation of Aβ peptide production suggests that 
APP metabolism is at the heart of the disease process. This 
hypothesis was recently strengthened by the discovery of 
a rare APP mutation that lowered both Aβ peptide produc-
tion and the AD risk [12]. Lastly, consistent evidence also 
suggests that common genetic risk factors for late-onset 
AD (LOAD)—including the APOE gene—may be involved 
in Aβ clearance in the brain [13]. Taken as a whole, these 
observations indicate that Aβ production via the deregula-
tion of APP metabolism should still be considered as a key 
pathogenic factor in AD.

Three main proteases (α-, β- and γ- secretases) are 
involved in APP processing through (1) the amyloido-
genic pathway (β- and γ-secretases), leading to Aβ pro-
duction, and (2) the non-amyloidogenic pathway (α- and 
γ -secretase), which prevents Aβ generation by cleaving 
APP within the Aβ sequence [6]. Recently, new δ- and 
η-secretase activities have been characterized [1, 26, 28], 
indicating that additional APP processing pathways may 
exist and may thus modulate Aβ loads. In addition to 
secretase activities, APP trafficking in the secretory path-
way and APP’s fate are also essential factors in APP metab-
olism. APP matures in the endoplasmic reticulum and the 
Golgi apparatus and is then transported to the cell surface. 
Alternatively, APP can reach lysosomal compartments, 
where it undergoes proteolytic inactivation [15]. The equi-
librium between these two compartments is driven by APP 
trafficking and maturation. O- and N-glycosylation are 

prerequisites for making APP available to the secretases at 
the cell surface and in the endosomal system, and thus for 
Aβ production. In this context, the various mechanisms that 
control APP trafficking are being intensively investigated. 
However, a large proportion of the key molecular players in 
APP trafficking have yet to been characterized.

Interestingly, new susceptibility loci for LOAD have 
been identified using genome-wide association studies 
(GWASs). One can reasonably assume that some of these 
genetic factors are involved in APP metabolism and Aβ 
production. However, it is important to bear in mind that 
GWAS loci may contain several genes; hence, complex 
linkage disequilibrium patterns with the sentinel SNP in 
some of these loci may make it impossible to determine 
which gene is responsible for the observed signal. Indeed, 
there are 123 genes of interest within the 19 genomic risk 
regions identified in the International Genomics of Alzhei-
mer’s Project (IGAP) [9]. Even when a causative gene is 
eventually characterized, it is often difficult to establish a 
link with the pathophysiology of AD on the basis of litera-
ture data alone.

Given this context, we are seeking to develop novel, 
powerful approaches for empirically testing several 
GWAS-identified genes in cell-based or animal models. We 
therefore developed a genome-wide, high-content siRNA 
screening approach and used it to assess the functional 
impact of gene under-expression on APP metabolism.

Methods

HSC assay

We developed HEK293 cells line stably over-expressing a 
mCherry-APP695WT-YFP. The modified APP695WT protein 
is shown metabolized in the same way as APP695WT [21]. 
Custom, automatic image processing was used to deter-
mine the cell count and the mean fluorescence intensity per 
cell for both mCherry and YFP signals in cytoplasm. We 
tested the sensitivity of this model by measuring the modu-
lation of intracellular APP fluorescence after treatment with 
proteasome inhibitor, γ-secretase inhibitor or transfection 
of siRNAs directed against APP and PSEN1 (Supplemental 
Fig 1 and Fig. 1c, d). These data demonstrated that both 
mCherry and YFP read-outs are markers of APP levels and 
APP processing. With an average of 1000 cells analyzed 
per well, 100% of test plates (n = 9) were validated with 
a β score higher than 3 according to the HCS guideline [2] 
(Supplemental Fig. 1).

16 Stellar-Chance Laboratories, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia, USA
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Genome‑wide, high‑content siRNA screening

The SiGENOME SMARTpool siRNA library (targeting the 
18,107 genes of the whole human genome) was screened in 
HEK293 cells stably over-expressing a mCherry-APP695wt-
YFP. Briefly, 50 nl of 10 µM solutions of each siRNA 
were first transferred to 384-well microtiter plates using an 
Echo 555 liquid handler. Next, 10 µl of D-PBS containing 
0.1 µl of lipofectamine™ RNAiMax were then distributed 
using a BioTEK EL406 Washer Dispenser. After a 30-min 
incubation at room temperature (enabling the transfectant 
complex reaction), 40 µl of HEK293-mCherry-APP695wt-
YFP cells were distributed onto the plates using a BioTEK 
EL406 Washer Dispenser, in order to obtain a final density 
of 3000 cells per well. The microplates were incubated for 
3 days at 37 °C. The cells were then incubated with 5 µg/ml 
of Hoechst 33,342 at 37 °C with 5% CO2 (v/v) for 30 min. 
After removal of the cell medium, 10% formalin was added 
to each well and plates were incubated at room temperature 

for 30 min for staining and cell fixation. Lastly, the cells 
were stored in D-PBS, and images were acquired at 405, 
488 and 561 nm with an InCell Analyser 6000 high-reso-
lution automated confocal microscope. One field per well 
was read from the B1 well to the O24 well in a horizontal, 
serpentine acquisition mode with a 20× objective.

HCS quantification and analysis

Customized image analysis software (Columbus 2.7, Perki-
nElmer) was used for the image analysis and the quantifi-
cation. Hoechst staining was used for the segmentation of 
both nuclei and cell. Next, the mean fluorescence intensity 
of each mCherry and YFP signals in the cytoplasm were 
quantified. The mean fluorescence intensity of each signals 
were then normalized to the fold-change based on the non-
targeting siRNA in the same plate. To evaluate the impact 
of each siRNA, an average of 1000 cells was analyzed per 
run (n = 3). For the quality control of HTS, we used strictly 

Fig. 1  Genome-wide high-content siRNA screening identifies 
modulators of APP metabolism. a Schematic representation of APP, 
showing the point in the sequence at which the fluorescent pro-
teins (cherry and YFP) were inserted. b Representative fluorescence 
microscopy images, showing HEK293 cells transfected with double-
tagged APP (cherry-APP-YFP) and stained with Hoechst reagent. 
Scale bar 10 µm. c Representative fluorescence microscopy images 
showing the impact of siRNA transfection (non-targeting, siAPP or 
siPSEN1) on the mCherry and YFP intensities. Scale bar 100 µm. d 
Quantification of the relative mean fluorescence intensity of mCherry 

and YFP signals per cell after siRNA transfection. Histograms indi-
cate the mean ± SD values. *p < 0.05, non-parametric test. e Mean 
fluorescence intensity variations (log2 fold-change) of the YFP sig-
nal obtained after genome-wide siRNA screening in triplicate. f Mean 
fluorescence intensity variations (log2 fold-change) of the mCherry 
signal obtained after genome-wide siRNA screening in triplicate. 
The mCherry signal was used to determine the 5% hits exhibiting the 
strongest variations (in red; 2.5% showing an upregulation and 2.5% 
showing a downregulation). g The best 10 canonical-pathways identi-
fied after pathway enrichment analysis using IPA
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standardized mean difference with more than 3 of beta-
score of two positive control (siRNA-APP and siRNA-PS1, 
n = 14 each per plate) (Supplemental Fig. 1).

Pathway analysis

Ingenuity Pathway Analysis (IPA; Ingenuity Systems/
Qiagen, Redwood City, USA) was used to map lists of 
significant genes to gene ontology groups and biological 
pathways. An Ingenuity ‘core analysis’ based on the Inge-
nuity Pathway Knowledge Base (gene only) was performed 
(2015 release) considering only molecules and/or relation-
ships experimentally observed (direct and indirect relation-
ships) in human (stringent filter).

CSF biomarker datasets

CSF samples were obtained from the Knight-ADRC 
(N = 893), ADNI (N = 394, the Biomarkers for Older Con-
trols at Risk for Dementia (BIOCARD) (N = 182), Mayo 
Clinic (N = 433), Lund University (Swedish) (N = 293), 
University of Pennsylvania (Penn) (N = 164), University of 
Washington (N = 375).

Cases were diagnosed with dementia of the Alzheimer’s 
type (DAT) according to the NINCDS-ADRDA. Control 
individuals were evaluated using the same criteria and 
showed no symptoms of cognitive impairment. All par-
ticipants provided written informed consent and the eth-
ics committee approved the informed consent procedure 
(IRB ID #: 201105364). 787 additional samples with bio-
marker data used in the analyses were obtained from the 
ADNI database (adni.loni.usc.edu). CSF in all studies 
was collected in a standardized manner. Briefly, CSF (20–
35 ml) was collected at 8:00 AM after overnight fasting, as 
described previously [10, 11]. LPs (L4/L5) were performed 
by a trained neurologist using a 22-gauge Sprotte spinal 
needle. Samples were gently inverted to avoid gradient 
effects, briefly centrifuged at low speed to pellet any cel-
lular elements, and aliquoted (500 μl) into polypropylene 
tubes before freezing at −84 °C. Biomarker measurements 
within each study were conducted using internal standards 
and controls to achieve consistency and reliability. How-
ever, differences in the measured values between studies 
were observed which are likely due to differences in the 
antibodies and technologies used for quantification (stand-
ard ELISA with Innotest for Knight-ADRC, UW, Swed-
ish, German, and Mayo versus Luminex with AlzBio3 for 
ADNI-1, ADNI-2, BIOCARD and Penn), ascertainment 
and/or handling of the CSF after collection. CSF Aβ42 and 
ptau181 values were log transformed in order to approxi-
mate a normal distribution. Because the CSF biomarker 
values were measured using two different platforms (stand-
ard ELISA with Innotest and Luminex with AlzBio3), we 

did not combine the raw data. For the combined analyses, 
we standardized the mean of the log-transformed values 
from each dataset to zero. No significant differences in 
the transformed and standardized CSF values were found 
between cohorts. We also performed meta-analyses for 
the most significant SNPs by combining the P values for 
each independent dataset using METAL. No major dif-
ferences were found between the joint-analyses and the 
meta-analyses.

Cell culture, transfections, and Western blotting (WB)

HEK293 cell lines were maintained in 1:1 DMEM F12/
Opti-MEM supplemented with 10% fetal bovine serum, 
penicillin, and streptomycin at 37 °C in a humidified 
atmosphere with 5% CO2. Prior to transfection, cells 
were plated at a density of ~70%. transient transfection of 
FERMT2 cDNA (cloned into a pcDNA4 vector; GeneArt) 
was performed using Fugene HD (Invitrogen) accord-
ing to the manufacturer’s instructions. For WB, cells were 
washed with PBS and solubilized in ice-cold lysis buffer 
(Tris 1 M pH 7.4; NaCl 1.5 M; Nonidet P-40 0.1%; SDS 
10%; sodium orthovanadate 100 mM; sodium deoxycho-
late 0.5%; 1× complete protease inhibitor mixture, Roche 
Applied Sciences). Cell extracts (5–20 μg) were analyzed 
using SDS-PAGE and the antibodies listed. For WB and 
immunofluorescence analysis, the following antibod-
ies were used: hFERMT2 (GTX84507, GeneTex), amy-
loid precursor protein C-Terminal (A8717, Sigma), actin 
(A2066, Sigma), β-amyloid 6E10 (SIG-39320, Bioleg-
ends), ATPase (Na+–K+) alpha subunit (a5, DSHB), Rab4 
(PA3-912, Thermo Scientific Pierce), Alzheimer precursor 
protein A4 clone 22C11 (MAB348, Millipore). For siRNA 
transfection, we used Dharmacon siRNA, non-targeting 
(D0018100105) and siFermt2 (J01275305, J01275306, 
J01276307, J01275308 and L01275300). Secreted Aβ and 
sAPP fragments were analyzed with an AlphaLISA, as 
described previously [15].

Primary neuronal cultures

Primary mixed cortical and hippocampal neuronal cul-
tures were obtained from P0 rats, according to previously 
described procedures [16]. Briefly, hippocampi and corti-
ces were isolated from newborn rats, and neurons were 
dissociated by trypsin digestion. Neurons were plated on 
poly-l-lysine-coated coverslips or six-well plates, and 
were incubated with minimal essential medium (MEM) 
supplemented with 10% fetal bovine serum, Glutamax, 
MEM vitamins and penicillin/streptomycin (Life Tech-
nologies), according to the manufacturer’s instructions. 
After 24 h, neurons were transferred into serum-free Neu-
robasal-A medium supplemented with B27 (Gibco, Life 
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Technologies), Glutamax and uridine-deoxyfluorouridine 
for 14 days of in vitro culture. Lentivirus transductions 
were performed (MOI = 4) used Mission shRNA vec-
tors (Sigma), non-targeting (05191520MN) and shFermt2 
(TRCN0000191859).

Immunofluorescence

The immunofluorescence procedure has been described 
previously [5]). In brief, cells were washed with PBS, 
fixed in PBS containing 4% paraformaldehyde for 20 min 
at room temperature, and then permeabilized with 0.25% 
(v/v) Triton X-100 in PBS for 10 min. After blocking in 
1% (w/v) bovine serum albumin (BSA), cells were incu-
bated for 2 h at room temperature with primary antibod-
ies diluted 1/100 in PBS 1% BSA. The cells were then 
washed 3 times with PBS. Appropriate secondary antibod-
ies (diluted 1/400) were applied. After washing, coverslips 
were mounted on slides.

For the APP internalization assay, cells were incubated with 
6E10 antibody for 1 h at 4 °C in ice-cold Dulbecco’s modified 
Eagle’s medium supplemented with 1% (w/v) bovine serum 
albumin and then washed and incubated at 37 °C for the times 
indicated. Cells were fixed as described above.

Cell surface biotinylation

HEK293-APP695WT cells or primary neuronal cultures 
were transfected in 100 mm dishes. After 48 h of transfec-
tion, cell surface proteins were biotinylated using sulfo-
NHS-SS-biotin, as per the supplier’s recommendations 
(Cell Surface Protein Isolation Kit, Pierce). Briefly, cells 
were incubated with cold PBS containing sulfo-NHS-SS-
biotin for 30 min at 4 °C, with gentle rocking. Cells were 
then lysed and immunoprecipitated with streptavidin beads. 
Precipitated proteins were eluted from the avidin beads 
with loading buffer containing 50 mM DTT, heated for 
5 min at 95 °C, and analyzed by WB.

Statistical analysis

The robustness of the replicates between the 3 screens was 
assessed using the standard deviation (SD). In average, the 
SD was of 11.5% (±7.3%) for the 16,658 genes and 12.4% 
(±8.1%) for the 832 hits. Only 661 genes exhibited experi-
ments with an SD superior of 25% for the 16,658 genes 
(54 in the 832 list). Associations between the CSF Aβ42 
level and the genetic variants were analyzed as previously 
reported [7]. Our analysis included a total of 5,815,690 
imputed and genotyped variants. We used Plink to analyze 
the SNPs’ associations with CSF biomarker levels. Age, 
gender, site, and the three principal component factors for 
the population structure were included as covariates.

Results

Systematic high‑content screening for genes 
that modulate APP metabolism

To identify modulators of APP metabolism, we developed 
a cell-based, high-content assay for the rapid detection and 
quantification of intracellular APP fragments in HEK293 
cells stably over-expressing a mCherry-APP695WT-YFP 
(Fig. 1a, b, Supplemental Fig. 1). After customization for 
automatic image processing, we screened a genome-wide 
bank of 18,107 human siRNAs (SMARTpool) by analyz-
ing the impact of transfection in our HEK293 model (in 
a 384-well plate format). For quality control procedures, 
the siRNA-PSEN1 and siRNA-APP (Fig. 1c, d) were 
used to calculate the strictly standardized mean differ-
ence (denoted as β in Supplemental Fig. 1). The complete 
screen was performed in triplicate, and only plates with 
β > 3 were analyzed (98.5%) as recommended in high-
content screening (HCS) guidelines [2]. This procedure 
led us to select 17,354 siRNAs. Furthermore, experiments 
in which less than 300 cells per well were analyzable were 
excluded (mean ± standard deviation cell count per well 
for the whole HCS experiment: 795 ± 345). The impact of 
16,653 siRNA transfections on APP metabolism was then 
assessed, and the mean variation in both mCherry and YFP 
signals was normalized against the fluorescence intensity 
of non-targeting siRNA. It is noteworthy that transfec-
tion of siRNA targeting genes already known to modulate 
APP metabolism (ADAM10, PSEN1, BACE1 and SORL1) 
showed significant variations for mCherry and YFP signals, 
compared with non-targeting siRNA (Supplemental Fig. 2).

Because YFP fluorescence is detected weakly, due to its 
rapid turnover at the membrane [21], it limited the detec-
tion of a down-variation for this signal (Fig. 1e). Thus, 
we decided to focus on the mCherry signal as the main 
read-out for selecting the 5% of hits showing the strong-
est variations (2.5% upregulated and 2.5% down-regulated) 
(Fig. 1f). In all, 832 hits with a potential impact on APP 
metabolism were selected (Fig. 1f; Supplemental Table 1). 
In average, the standard deviation was of 12.4% (±8.1%) 
for the 832 hits.

Starting from this list of genes, we investigated poten-
tial protein–protein interaction networks by using Ingenu-
ity Pathway Analysis (IPA) software (http://www.inge-
nuity.com/products/ipa). This hypothesis-free approach 
described a complex interactive network that was primar-
ily centered on APP (Supplemental Fig. 3). APP was the 
protein with the highest number of interactions with other 
proteins in the network—indicating that our HCS approach 
efficiently detected proteins known to interact with APP. 
Gene enrichment analysis (using IPA) of the 832 hits iden-
tified 10 significantly over-represented pathways; notably, 

http://www.ingenuity.com/products/ipa
http://www.ingenuity.com/products/ipa
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dermatan and chondroitin sulfate biosynthesis (p = 0.0007) 
is involved in the composition of the extracellular matrix 
and the glycosylation of proteins like APP (Fig. 1g). All the 
other pathways were signaling pathways mainly involving 
integrin, paxillin or receptor tyrosine kinase signaling (Sup-
plemental Fig. 4). These pathways (axogenesis; neuron and 
neurite development; cell–cell junction maintenance; cell 
morphogenesis and projection; and integrin-mediated sign-
aling) have been already implicated in the modulation of 
Aβ secretion [3].

Identification of FERMT2 as a genetic risk factor 
that modulates APP metabolism

We used HCS data to investigate the function of the genes 
within the LOAD risk loci recently reported in the IGAP’s 
meta-analysis of GWASs [14]. Of the 123 known genes 
reaching genome-wide significance, 8 were included in the 
top 5% of hits: OR2AE1, GPC2, PVRIG, PILRA, AGFG2, 
TRIM35, EPHX2 and FERMT2 (Fig. 2a) suggesting that 
these genes could be involved in the AD process via the 

regulation of APP metabolism. However, only PIRLA 
and FERMT2 showed an effect on the Aβ1-x secretion in 
HEK293-mCherry-APP695wt-YFP (Fig. 2b). Lastly, to 
assess the potential impact of these genes on Aβ peptide 
levels in humans, we measured the association between 
SNPs in these 8 genes and cerebrospinal fluid (CSF) Aβ42 
peptide levels in a large sample (n = 2886) of AD cases 
[7]. After gene-wide correction (Bonferroni, p < 0.006), 
we found that only SNPs within FERMT2 were associated 
with low Aβ42 peptide levels (p = 0.0006; Table 1).

Of note, according to the RNA-Seq transcriptome and 
splicing database (http://web.stanford.edu/group/barres_
lab/brain_rnaseq.html), FERMT2 (but not PIRLA) is 
expressed in neurons which are the main sources of Aβ in 
the brain. Similar results were observed in another database 
focusing on hippocampal neurons (http://hipposeq.janelia.
org/; data not shown).

All together, these observations highlighted the poten-
tial role of FERMT2 in the AD process via the modula-
tion of APP metabolism and Aβ peptide generation. We 
first validated the silencing of FERMT2 after transfection 

Fig. 2  Cross-correlations between HCS and GWAS data. a Mean 
variations in mCherry fluorescence intensity after the silencing of 
genes associated with the AD risk in the IGAP’s meta-analysis. 
Eight genes (in red) were included in the best 5% variations, based 
on the HCS data. b Impact of the silencing of the 8 hits on the Aβ1-

X secretion level in the medium of the HEK293-mCherry-APP-YFP 

cell line. Histograms indicate mean ± SD. *p < 0.05, non-parametric 
test. c Validation of FERMT2 silencing after transfection with the 
siRNA-FERMT2 SMARTpool used in HCS. d Representative fluo-
rescence microscopy images and quantification showing the impact 
of FERMT2 silencing on mCherry and YFP intensity based on HCS 
data. Scale bar 10 µm

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html
http://web.stanford.edu/group/barres_lab/brain_rnaseq.html
http://hipposeq.janelia.org/
http://hipposeq.janelia.org/
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of the SMARTpool siRNA library used for HCS (Fig. 2c). 
FERMT2 knock-down was associated with the accumula-
tion of both mCherry and YFP signals (Fig. 2d). Thus, we 
decided to focus on characterizing the impact of FERMT2 
on APP metabolism in cell-based models.

FERMT2 modulates APP processing and metabolite 
secretion

To rule out a potential off-target effect of the siRNA-
FERMT2 SMARTpool used for HCS (four different siR-
NAs), we first validated the mCherry and YFP signal vari-
ations associated with FERMT2 silencing by assessing the 
effect of each siRNA-FERMT2 independently (n = 4). 
Three siRNA-FERMT2 were associated with an increase in 
both mCherry and YFP signals, which was consistent with 
the effect observed when using the siRNA pool (Supple-
mental Fig. 5).

To further evaluate the impact of FERMT2 silencing 
on APP metabolism, we quantified mature and imma-
ture forms of APP and the various metabolites of APP. In 
the HEK293 cell line stably over-expressing APP695WT 
(HEK293-APP695WT), we observed that a strong increase in 
mature APP levels was associated with the accumulation of 
all the APP-derived substrates for α-, β- and γ-secretases 
(C83 and C99 intracellular C-terminal fragments of APP 
produced, respectively, by α- and β-secretases, as well as 
APPα, sAPPβ and Aβ secretions) (Fig. 3a). Again, simi-
lar results were obtained using different siRNA-FERMT2 
sequences (Supplemental Fig. 6).

Next, we assessed the impact of FERMT2 silenc-
ing on endogenous APP metabolism in HEK293. As 
observed in HEK293-APP695WT cells, FERMT2 silenc-
ing resulted in a significant increase in mature APP levels 
(Fig. 3b). It is noteworthy that mature APP levels also rose 

after transfection of siRNA-FERMT2 into the HEK293-
mCherry-APP695wt-YFP cell line (Supplemental Fig. 7)—
showing that the mechanisms were consistent in our cell 
models expressing APP695WT in the presence or absence of 
mCherry and YFP tags.

Lastly, we confirmed the increase in neuron levels of 
mature APP after lentiviral transduction with shRNA 
against FERMT2 in a primary neuronal culture (PNC) 
endogenously expressing APP (Fig. 3c). Taken as a whole, 
these results show that FREMT2 silencing (using either 
siRNA or shRNA) controls the mature APP levels in vari-
ous models overexpressing (or not) APP.

FERMT2 expression controls cell surface levels of APP

A large body of evidence suggests that APP is mainly 
cleaved by secretases at or near the plasma membrane. Since 
FERMT2 silencing reportedly increases the amount of CD39 
and CD73 at the cell surface [18], we looked at whether 
FERMT2 can interfere with mature APP levels by promot-
ing APP trafficking to the cell surface. If so, this would be 
consistent with our previous observation in which FERMT2 
silencing appeared to be associated with a general increase 
in mature APP levels, but did not change immature APP 
levels in total cell extracts. We addressed this hypothesis 
more specifically by performing extracellular biotinylation 
experiments; these revealed that FERMT2 silencing strongly 
increased mature APP levels at the cell surface in HEK293-
APP695wt cells (Fig. 4a). Conversely, the over-expression 
of FERMT2 was associated with low mature APP levels at 
the cell surface (Fig. 4b). This observation was validated in 
HEK293 and PNCs (both of which endogenously expressed 
APP): FERMT2 silencing was systematically associated 
with more abundant mature APP in cell-surface-biotinylated 
fractions (Fig. S7 and Fig. 4c, respectively).

Table 1  The associations 
between the eight genes located 
in IGAP loci and the CSF Aβ42 
concentration (n = 2886 AD 
cases)

Bold represents significance after correction for multiple testing

* Linear regression, adjusted for age and gender

Modulators of APP metabolism in IGAP loci Association with the CSF Ab42 
level*

Chr. IGAP locus Gene GFP log2 fold-
change

mCherry log2 
fold-change

SNP β score p value

7 ZCWPW1 OR2AE1 −0.58 ±0.05 −1.18 ±0.07 rs35649099 −0.01422 0.2026

GPC2 −0.68 ±0.09 −1.45 ±0.32 rs12705074 −0.01702 0.0384

MGC2463 1.29 ±0.04 1.83 ±0.02 rs150436753 0.01965 0.1215

PILRA 1.17 ±0.10 1.43 ±0.16 rs28714213 0.01737 0.0171

AGFG2 −0.34 ±0.05 −1.21 ±0.16 rs78951820 −0.03433 0.0247

8 PTK2B TRIM35 1.84 ±0.30 1.91 ±0.50 rs77389621 −0.02716 0.0584

EPHX2 −0.46 ±0.08 −1.42 ±0.30 rs7341557 0.02001 0.0160

14 FERMT2 FERMT2 1.19 ±0.34 1.67 ±0.28 rs62003531 −0.02745 0.0006
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FERMT2 silencing inhibits APP degradation 
and promotes APP recycling at the plasma membrane

Since FERMT2 silencing reportedly enhances cell-sur-
face CD39/CD73 levels by promoting their recycling to 
the plasma membrane [18], we also looked at whether 
FERMT2 has a similar effect on APP. To this end, we first 
explored the time course of APP degradation by using the 
alkalinizing drug bafilomycin A1 (BafA1) to block trans-
port from late endosomes to lysosomes. We found that 
siFERMT2 significantly lowered the accumulation of 
mature APP upon BafA1 treatment (Fig. 5a)—suggesting 
that FERMT2 silencing may lead to a reduction in APP 
degradation by lysosomes.

We next assessed the impact of FERMT2 silencing on 
APP internalization. After incubation of HEK293-APP695wt 
cells with 6E10 antibody at 4 °C, the time course of 6E10-
APP complex endocytosis was monitored via immuno-
fluorescence (Fig. 5b, c). After 20 min at 37 °C, APP was 
rapidly internalized into small vesicles at all levels of 
FERMT2 expression. Although internalization was unaf-
fected, the remaining APP staining in vesicles was more 
intense in cells under-expressing FERMT2 than in con-
trol cells (respectively, 47 ± 16 versus 19 ± 9% of the 
initial APP staining observed at the cell surface before 

internalization). A similar observation was made at 40 min 
(32 ± 9 and 13 ± 7%, respectively). These data suggest 
that FERMT2 lowered lysosomal degradation of APP by 
favoring the recycling route and thus boosting cell surface 
levels of APP. Inhibition of β3-integrin reportedly promotes 
the activation of a RAB4-regulated pathway that (for exam-
ple) diverts receptor tyrosine kinases (such as the VEGFR) 
from the degradative route back to the plasma membrane 
[4]. In order to establish whether a similar mechanism was 
operating for APP, we measured the effect of FERMT2 
silencing on the APP recycling rate (i.e., the proportion of 
internalized APP colocalized with Rab4). We observed an 
increase in the proportion of Rab4+/APP+ endosomes; 
this indicated the induction of the APP recycling and was 
concordant with the above-mentioned accumulation of APP 
at the cell surface (Fig. 5d, e). Importantly, Rab4 expres-
sion did not change after siRNA-FERMT2 transfection. 
Lastly, we found that co-transfection of siRNA-FERMT2 
with Rab4A-specific siRNA abolished the accumulation 
of mature APP (Fig. 5f). These data show that Rab4A is 
required for the induction of APP recycling after FERMT2 
silencing. Taken as a whole, our results suggest that by 
facilitating APP recycling after endocytosis, FERMT2 con-
trols the pool of mature APP available for cleavage by α-, 
β- and γ-secretases.

Fig. 3  Characterization of the impact of FERMT2 on APP metabo-
lism. a Impact of FERMT2 silencing on APP metabolism in the 
HEK293-APP695WT cell line. Cells transiently transfected with 
siFERMT2 or non-targeting siRNA were analyzed by WB using 
anti-APP C-terminal, anti-FERMT2 or anti-actin antibodies. sAPPα, 
sAPPβ and Aβ1-X secreted into conditioned medium were assayed 
using an AlphaLISA. ma. APP, mature APP; im. APP, immature APP. 

Densitometric analyses and WB quantifications from three independ-
ent experiments are shown. Histograms indicate the mean ± SD. a.u., 
arbitrary units. *p < 0.05, non-parametric test. b Impact of FERMT2 
silencing on the mature APP levels in HEK293 cells endogenously 
expressing APP. c Quantification of mature and immature APP levels 
after lentiviral transduction with shRNA against FERMT2 in a pri-
mary neuronal culture endogenously expressing APP
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Discussion

One can legitimately hypothesize that at least some of the 
genetic risk factors identified in GWASs have a role in APP 
metabolism and Aβ production. However, APP metabolism 
is a complex process and the underlying mechanisms have 
not been fully characterized yet. Literature data on these 

risk factors provide indirect clues but clearly cannot ascribe 
these genes with a genuine impact at a particular step in 
the pathophysiology of APP processing. Furthermore, a 
conventional gene-by-gene cell biology approach did not 
appear to be time- or cost-effective for investigating the 
123 genes located within the GWAS-defined susceptibility 
loci. Hence, we developed an HCS assay for empirically 

Fig. 4  FERMT2 expression 
controls the cell surface level 
of mature APP. a Cell-surface-
biotinylated proteins from 
HEK293-APP695WT cells 
transiently transfected with 
siFERMT2 or non-targeting 
siRNA. Cell extracts were 
precipitated with immobilized 
avidin and analyzed by WB 
using antibodies against APP, 
FERMT2, actin (an intracellular 
marker), and Na–K-ATPase 
α1 (a cell surface marker). ma. 
APP, mature APP; im. APP, 
immature APP. Densitometric 
analyses and WB quantifica-
tions from three independent 
experiments are shown. Histo-
grams indicate the mean ± SD. 
a.u., arbitrary units. *p < 0.05, 
non-parametric test. b Cell-
surface-biotinylated proteins 
from HEK293-APP695WT cells 
transiently transfected with 
FERMT2 cDNA or empty 
vector (Mock). c Cell-surface-
biotinylated proteins from 
primary neuronal culture after 
lentiviral transduction with 
shRNA against FERMT2 or 
non-targeting shRNA
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testing multiple GWAS-identified genes and identifying 
modulators of APP metabolism.

Our genome-wide siRNA screening gave us an overview 
of the different factors likely to affect APP metabolism and 
thus enabled us to select the most significant APP modu-
lators (i.e., the 5% throughout the genome showing the 
strongest variations). From among a total of 832 modula-
tors, we identified 8 genes associated with the AD risk in 
the largest yet GWAS meta-analysis (the IGAP). Impor-
tantly, our approach is not fully exhaustive and it is impos-
sible to exclude that genes involved in APP metabolism are 
localized outside of the peak defined by the GWAS but reg-
ulated by SNP associated with AD risk. Similarly, focusing 
on the 5% strongest variations may lead to exclude some 
genes of interest. For instance, although SORL1 was not 
included in the 832 best hits, under-expression of this gene 

had significant impact on mCherry and YFP signals when 
compared with non-targeting siRNA. Moreover, SNPs 
localized within SORL1 showed an association with the 
CSF Aβ42 level (p = 0.007).

To validate the potential impact of these genes on APP 
metabolism in vivo, we assessed the association between 
SNPs in these genes and the CSF Aβ42 level in 2886 AD 
cases. Only FERMT2 was associated with significantly 
low levels of Aβ42 (p = 0.0006) after correction for mul-
tiple testing. The SNP rs62003531 most strongly associated 
with the Aβ42 level was in strong linkage disequilibrium 
(r2 = 0.77) with the sentinel SNP rs17125944 (found to 
be associated with the AD risk in the IGAP’s GWAS meta-
analysis). It is noteworthy that this sentinel polymorphism 
was also associated with Aβ42 levels (p = 0.03)—suggest-
ing that both these SNPs represent the same genetic signal. 

Fig. 5  FERMT2 silencing inhibits APP degradation and promotes 
APP recycling at the plasma membrane. a HEK293-APP695WT cells 
transiently transfected with siFERMT2 or non-targeting siRNA were 
treated with bafilomycin A1 (BafA1, 50 nM) for the indicated times. 
Cell extracts were then analyzed by WB. Densitometric analyses and 
mature APP levels for three independent experiments are shown. 
Graphs indicate the mean ± SD. *p < 0.05, non-parametric test. b 
The time course of APP endocytosis and degradation was indirectly 
visualized by internalization of 6E10 antibody. Cells were incubated 
with 6E10 antibody at 4 °C for 1 h. The temperature was then shifted 
to 37 °C, and cells were processed for immunofluorescence at the 

indicated times. Scale bar 10 µm. c Relative fluorescence intensity 
from 6E10 staining, showing the time course of APP degradation. d 
A zoom-in (the square in b) for the indicated times (0 and 20 min 
at 37 °C). Co-staining with anti-Rab4 antibody was used to visual-
ize the APP within Rab4-positive endosomes involving in recycling. e 
Co-localization of 6E10 staining with Rab4 staining, as a guide to the 
APP level within recycling endosomes at the indicated times. f Cells 
transiently transfected with anti-FERMT2 in the presence or absence 
of siRab4. Extracts were analyzed by WB using anti-APP C-terminal, 
anti-FERMT2, anti-Rab4 or anti-actin antibodies
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Taken as a whole, these data indicate that FERMT2 regu-
lates APP metabolism in general and Aβ loads in particu-
lar. Accordingly, we observed that FERMT2 silencing led 
to an increase in mature APP levels and Aβ secretion. Since 
we also observed that APP recycling was promoted by 
FERMT2 silencing through Rab4A-positive endosomes, our 
data strongly suggest that FERMT2 regulates APP recycling 
and its presence at the cell surface. The extracellular domain 
of APP is reportedly involved in cell–matrix adhesion and 
facilitates cell–cell adhesion via transcellular interactions 
[17]. Interaction between APP and integrin is required for 
adequate neurite outgrowth and contact guidance [24, 27]. 
Moreover, abnormal cleavage of APP might impair the pro-
tein’s functions in cell adhesion and migration [22]. Hence, 
the regulation of cell adhesion may be important in APP 
metabolism. Furthermore, FERMT2 expression is required 
for cell adhesion; recruitment of the focal adhesion kinase 
FAK and p130CAS is required for β3 integrin signaling 
[19, 25]. Several lines of evidence have established that 
integrin signaling controls the trafficking of other recep-
tors and cargos [4]. For instance, inhibition of β3-integrin 
might promote the activation of a Rab4-regulated pathway 
that (for example) diverts receptor tyrosine kinases (such 
as the VEGFR) from their degradation route back to the 
plasma membrane [20]. These data suggest that FERMT2 
has an integrin-dependent impact on mature APP levels via 
a similar mechanism. It is noteworthy that some of the main 
regulators of integrin signaling (e.g., β3-integrin, Src, paxil-
lin and p130Cas) were also identified as modulators of APP 
metabolism in our HCS analysis (Supplemental Fig. 4).

Although FERMT2 expression appears to control cell 
surface levels of APP (which might modulate cell adhe-
sion), our data also indicate that a FERMT2 under-expres-
sion may favor Aβ production. Interestingly, by using 
another independent, systematic approach, we have already 
suggested that low FERMT2 expression might contrib-
ute to the development of AD [8]. We reported that the 
rs7143400-T allele (associated with an increase in the AD 
risk and located within the FERMT2 3′ untranslated region 
[3′-UTR]) creates a perfect seed for miR-4504. Co-trans-
fection of the rs7143400-T allele and miR-4504 resulted 
in lower luciferase activity (relative to the rs7143400-G 
allele co-transfected with the same miRNA). This observa-
tion indicated that a functional SNP within the FERMT2 
3′-UTR region is associated with an increase in the AD 
risk and a potential miR-dependent decrease in FERMT2 
expression. It is noteworthy that the rs7134400 SNP is in 
perfect linkage disequilibrium (r2 = 1) with rs62003531, 
which exhibited the most significant association with the 
CSF level of Aβ42. Taken as a whole, our data suggest that 
the rs7134400 T allele is associated with an increased AD 
risk by lowering FERMT2 expression; in turn, this disrupts 
APP metabolism and favors Aβ production.

Lastly, we recently highlighted the fact that several 
GWAS-defined genes already known to be involved in 
the focal adhesion pathway (Fak, Cass4 and EPHA1) are 
potential modulators of Tau toxicity in Drosophila [9]. 
Since genetic risk factors involved in cell adhesion signal-
ing have been associated with Aβ production or Tau tox-
icity, we suggest that the characterization of these mecha-
nisms should deepen our understanding of the link between 
amyloid and Tau in the AD process. FERMT2 might be 
located at the interface between these two hallmarks patho-
logical processes because it has already been described as a 
modulator of Tau toxicity in Drosophila [23].
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